Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Phys Condens Matter ; 36(30)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38588675

RESUMEN

Modulating interlayer coupling modes can effectively enhance the thermoelectric properties of nanomaterials or nanoscale devices. By using density functional theory combined with non-equilibrium Green's function method, we investigate the thermoelectric properties of zigzag-type black arsenic nanoscale devices with varying interlayer coupling modes. Our results show that altering the interlayer coupling mode significantly modulates the thermoelectric properties of the system. Specifically, we consider four coupling modes with different strengths, by modulating different interlayer overlap patterns. Notably, in the weaker interlayer coupling mode, the system exhibits enhanced thermoelectric properties due to increased interface phonon scattering, for example, the M4reaching a peak value of 2.23 atµ= -0.73 eV. Furthermore, we explore the temperature-dependent behavior of each coupling model. The results suggest that the thermoelectric characteristics are more sensitive to temperature variations in the weaker coupling modes. These insights provide valuable guidance for enhancing the thermoelectric performance of nanoscale devices through precise interlayer coupling modulation.

2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646770

RESUMEN

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Asunto(s)
Diatomeas , Dinoflagelados , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua de Mar , China , Dinoflagelados/crecimiento & desarrollo , Agua de Mar/análisis , Agua de Mar/química , Diatomeas/crecimiento & desarrollo , Océanos y Mares , Fósforo/análisis , Nitrógeno/análisis , Estaciones del Año
3.
Open Life Sci ; 19(1): 20220807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299010

RESUMEN

Branches covering (BC) is a way to reuse the pruned branches and save the cost of ground cloth. This study investigated the effects of BC and ground-cloth covering on the soil microcosm environment by measuring the chemical properties and microbial communities at different soil depths for 6 years. The results revealed that BC significantly improved soil chemical properties, increased the abundance of bacterial microbial communities and the diversity and homogeneity of bacteria and fungi, while decreased the abundance of fungal microbial communities. There was a threshold value for the regulation of microbial communities by BC, which decreased the high-abundance communities (Proteobacteria, Ascomycota, etc.) and increased the low-abundance communities (Acidobacteriota, Basidiomycota, etc.). Fungi were more sensitive to BC than bacteria. The stability and homogeneity of microorganisms were stronger in the 15-25 cm soil layer. The bacterial phyla were dominated by Proteobacteria, with the top 10 phyla accounting for more than 80% of the relative abundance; the genera were dominated by MND1, with the top 10 genera accounting for about 10%. The fungal phyla were dominated by Ascomycota, with the top 10 phyla accounting for 50-90%; the genera were dominated by unidentified Pyronemataceae sp., with the top 10 genera accounting for 30-60%. The phyla that differed significantly between treatments were mainly Proteobacteria, Ascomycota, Acidobacteriota, and Basidiomycota. In addition, metabolism was the predominant function in bacteria, while Saprotroph was the predominant function in fungi. Bacteroidota correlated strongly with soil chemical properties and bacterial functions, while Chytridiomycota correlated strongly with soil chemical properties and Pathogen-Saprotroph-Symbiotroph. In conclusion, BC can improve soil nutrient content and optimize microbial community structure and function. Through initially assessing the effects of BC on soil nutrients and microorganisms in pear orchard rows, this study provides a reference for excavating key microorganisms and updating the soil row management model.

4.
mBio ; 15(3): e0285323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349130

RESUMEN

While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningoencefalitis , Animales , Ratones , Linfocitos T CD4-Positivos , Criptococosis/microbiología , Células Dendríticas , Inmunidad Celular
5.
Drug Des Devel Ther ; 18: 259-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318502

RESUMEN

Background: Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods: We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results: AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion: This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Osteoartritis , Humanos , Animales , Ratones , Astragalus propinquus , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Farmacología en Red , Quercetina , Bases de Datos Genéticas , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
6.
Small ; : e2310847, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385814

RESUMEN

Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1 ) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM -skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.

7.
Sci Adv ; 10(1): eadj1120, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170765

RESUMEN

The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.


Asunto(s)
Gripe Humana , Lesión Pulmonar , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Pulmón , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Quimiocina
8.
medRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293201

RESUMEN

Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema. In the present studies, neurologic transcriptional pathway analysis utilizing a murine PIIRS model demonstrated a predominance of Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. JAK/STAT inhibitor treatment resulted in improvements in CNS damage markers, reductions in intrathecal CD44hiCD62lo CD4+ effector CD4+ T-cells and MHC II+ inflammatory myeloid cells, and weight gains in mice, the latter after treatment with antifungals. Based on these data, pathway-driven steroid-sparing human treatment for steroid-refractory PIIRS was initiated using short courses of the JAK/STAT inhibitor ruxolitinib. These were well tolerated and reduced activated HLA-DR+ CD4+ and CD8+ cells and inflammatory monocytes as well as improved brain imaging. Together, these findings support the role of JAK/STAT in PIIRS as well as further study of JAK/STAT inhibitors as potential adjunctive therapy for PIRS and other neural inflammatory syndromes.

9.
Int J Biol Macromol ; 258(Pt 2): 129004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151083

RESUMEN

This research aims to explore the potential of astragalus polysaccharides (APS) in treating osteoarthritis. The primary component of APS extracted in this study was glucose, and noticeably it had a relatively high content of glucuronic acids. In vitro, APS reduced ROS levels, protected chondrocytes from apoptosis, and promoted collagen II expression by regulating ASK1 (apoptosis-signal-regulating kinase1)/p38 cell apoptosis pathway. Further co-immunoprecipitation and immunofluorescence localization experiments demonstrated that the thioredoxin (TXN) antioxidant system was responsible for its bioactivity. Moreover, TXN silencing remarkably blocked the protective effects of APS, indicating that APS inhibited chondrocyte apoptosis by targeting TXN. In vivo, APS effectively mitigated cartilage loss and chondrocyte apoptosis and decreased expressions of p-ASK1 and p-p38. Collectively, this research first demonstrated that APS could ameliorate osteoarthritis by ASK1/p38 signaling pathway through regulating thioredoxin. In conclusion, APS holds promise as a nutraceutical supplement for osteoarthritis in future drug development.


Asunto(s)
Apoptosis , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Polisacáridos/farmacología
10.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067822

RESUMEN

For a fiber optic gyroscope, thermal deformation of the fiber coil can introduce additional thermal-induced phase errors, commonly referred to as thermal errors. Implementing effective thermal error compensation techniques is crucial to addressing this issue. These techniques operate based on the real-time sensing of thermal errors and subsequent correction within the output signal. Given the challenge of directly isolating thermal errors from the gyroscope's output signal, predicting thermal errors based on temperature becomes necessary. To establish a mathematical model correlating the temperature and thermal errors, this study measured synchronized data of phase errors and angular velocity for the fiber coil under various temperature conditions, aiming to model it using data-driven methods. However, due to the difficulty of conducting tests and the limited number of data samples, direct engagement in data-driven modeling poses a risk of severe overfitting. To overcome this challenge, we propose a modeling algorithm that effectively integrates theoretical models with data, referred to as the TD-model in this paper. Initially, a theoretical analysis of the phase errors caused by thermal deformation of the fiber coil is performed. Subsequently, critical parameters, such as the thermal expansion coefficient, are determined, leading to the establishment of a theoretical model. Finally, the theoretical analysis model is incorporated as a regularization term and combined with the test data to jointly participate in the regression of model coefficients. Through experimental comparative analysis, it is shown that, relative to ordinary regression models, the TD-model effectively mitigates overfitting caused by the limited number of samples, resulting in a substantial 58% improvement in predictive accuracy.

11.
J Fungi (Basel) ; 9(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37998856

RESUMEN

Fungal infections are an increasingly growing public health concern, and Cryptococcus is one of the most problematic fungal organisms causing substantial mortality and morbidity worldwide. Clinically, this high incidence of cryptococcosis is most commonly seen in immunocompromised patients, especially those who lack an adaptive T cell response, such as HIV/AIDS patients. However, patients with other underlying immunodeficiencies are also at an increased risk for cryptococcosis. The adaptive immune response, in particular the Th1/Th17 T-cell-mediated responses, to pulmonary Cryptococcus infections are required for host protection. Dendritic cells (DCs), encompassing multiple subsets identified to date, are recognized as the major professional antigen-presenting cell (APC) subset essential for the initiation and execution of T-cell immunity. Apart from their prominent role in orchestration of the adaptive arm of the immune defenses, DCs are fully armed cells from the innate immune system capable of the recognition, uptake, and killing of the fungal cells. Thus, DCs serve as a critical point for the endpoint outcomes of either fungal control or unrestrained fungal infection. Multiple studies have shown that DCs are required for anti-cryptococcal defense in the lungs. In addition, the role of DCs in Cryptococcus gattii infections is just starting to be elucidated. C. gattii has recently risen to prominence with multiple outbreaks in the US and Canada, demonstrating increased virulence in non-immunocompromised individuals. C. gattii infection fails to generate an inflammatory immune response or a protective Th1/Th17 T cell response, at least in part, through a lack of proper DC function. Here we summarize the multiple roles of DCs, including subsets of DCs in both mouse and human models, the roles of DCs during cryptococcal infection, and mechanisms by cryptococcal cells to attempt to undermine these host defenses.

12.
Front Psychiatry ; 14: 1238315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817834

RESUMEN

Background: Countries worldwide face the challenge of how medical personnel manage conflicts between work and family. Especially after the challenge of the COVID-19 epidemic, it is necessary to explore the possible mechanisms of work-family conflict, burnout, and turnover intention among primary medical staff. Objectives: This study aims to observe the turnover intention of Chinese primary medical staff and explore the relationship between work-family conflict, burnout, and turnover intention. Methods: A cross-sectional study included a turnover intention questionnaire, the Maslach Burnout Inventory-General Survey (MBI-GS), and the Work-Family Conflict Scale (WFCS) to understand turnover intention, burnout, and work-family conflict among primary medical staff in four cities (Xuzhou, Linyi, Huaibei, and Shangqiu cities) within the Huaihai Economic Zone. Spearman correlation analysis and hierarchical multiple regression analysis were used to examine the related factors of turnover intention. Structural equation modeling (SEM) was used to study the mediating role of burnout between work-family conflict and turnover intention. Results: In this study, there is a positive correlation between work-family conflict and turnover intention (P < 0.01). Demographic characteristics, work-family conflict, and burnout explained 2.3%, 20.3%, and 8.8% of the incremental variances, respectively. Burnout mediated the association between work-family conflict and turnover intention. Conclusions: Burnout can be regarded as a mediator between two different variables: work-family conflict and turnover intention. Improving work-family conflict and alleviating burnout may play a key role in reducing the willingness of primary medical staff to resign. Corresponding measures can be taken to balance the conflict between work and family, alleviate burnout, reduce turnover rates, and build a primary medical staff team with higher medical service quality and stability.

13.
ACS Appl Mater Interfaces ; 15(41): 48601-48612, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37787638

RESUMEN

Chameleons are famous for their quick color changing abilities, and it is commonly assumed that they do this for camouflage. However, recent reports revealed that chameleons also change color for body temperature regulation. Inspired by the structure of the panther chameleon's skin, a stripe-patterned poly(N-isopropylacrylamide) (PNIPAM) and polyacrylamide (PAM) hydrogel film with a laminated structure is fabricated in this work; thus, both camouflage and thermoregulation can be achieved through controlling Vis and NIR light effectively. For the PNIPAM stripe, the upper layer is the native PNIPAM hydrogel and the lower layer is the carbon nanotube-composited PNIPAM hydrogel. Thus, the PNIPAM stripe is capable of reaching 28 °C at a low environmental temperature (12 °C) and a low radiation intensity (20 mW cm-2), while preventing the body temperature from rising by changing to white under a strong radiation intensity (100 mW cm-2). For the PAM stripe, the upper layer combines colloidal photonic crystals and displays a tunable structural color by stretching, and the lower layer is mixed with PNIPAM microgels for thermal regulation. Through the fabrication of multifunctional patterns, the film can achieve both dynamic structural color and thermoregulation by precisely controlling solar radiation absorption, scattering, and reflection. More importantly, in the stripe-patterned system, the shrinkage of the PNIPAM stripes can effectively trigger the elongation of the PAM stripe, which endows the structural color changing process to be self-powered completely. The performances show that the stripe-patterned film may have potential applications in intelligent coatings, especially in areas with large temperature differences during the day such as high plains.


Asunto(s)
Piel Artificial , Hidrogeles , Luz , Temperatura , Regulación de la Temperatura Corporal
14.
Methods Mol Biol ; 2667: 71-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37145276

RESUMEN

Cryptococcal meningoencephalitis (CM), caused by the fungal pathogen Cryptococcus neoformans species complex, can lead to high mortality or severe neurological sequelae in survivors that are associated with excessive inflammation in the central nervous system (CNS), especially in those who develop immune reconstitution inflammatory syndrome (IRIS) or postinfectious immune response syndrome (PIIRS). While the means to establish a cause-and-effect relationship of a specific pathogenic immune pathway during CM by human studies are limited, mouse models allow dissection of the potential mechanistic links within the CNS immunological network. In particular, these models are useful for separating pathways contributing predominantly to immunopathology from those important for fungal clearance. In this protocol, we described methods to induce a robust, physiologically relevant murine model of C. neoformans CNS infection that reproduces multiple aspects of human cryptococcal disease immunopathology and subsequent detailed immunological analysis. Combined with tools including gene knockout mice, antibody blockade, cell adoptive transfer, as well as high throughput techniques such as single-cell RNA sequencing, studies using this model will provide new insights regarding the cellular and molecular processes that elucidate the pathogenesis of cryptococcal CNS diseases in order to develop more effective therapeutic strategies.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Meningoencefalitis , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Meningoencefalitis/microbiología , Meningoencefalitis/patología , Sistema Nervioso Central/patología
15.
Biotechnol J ; 18(9): e2200633, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37204010

RESUMEN

As mediators of pyroptosis, gasdermins (GSDMs) are closely associated with systemic cytotoxicity or so-called side effects and are also involved in the inflammatory response during chemotherapy. Using in situ proximity ligation assay followed by sequencing (isPLA-seq), which we recently developed, we screened a single-domain antibody (sdAb) library and identified several sdAbs against Gasdermin E (GSDME) that specifically recognize the N-terminal domain (1-270 aa) of GSDME (GSDME-NT). One of them mitigated the release of inflammatory damage-associated molecular patterns (DAMPs) and cytokines, including high mobility group protein b1 (Hmgb1) and interleukin-1ß (Il-1ß), in isolated mouse alveolar epithelial cells (AECs) upon chemotherapeutic agent cis-diaminodichloroplatinum (CDDP) treatment. Further investigation showed that this anti-GSDME sdAb also alleviated CDDP-induced pyroptotic cell death and lung tissue injury and decreased systemic Hmgb1 release in C57/BL6 mice, due to GSDME inactivation. Collectively, our data define an inhibitory role of the specific sdAb against GSDME, providing a potential strategy for systemically alleviating chemotherapeutic toxicities in vivo.


Asunto(s)
Proteína HMGB1 , Anticuerpos de Dominio Único , Animales , Ratones , Anticuerpos de Dominio Único/farmacología , Gasderminas , Proteína HMGB1/farmacología , Piroptosis/fisiología , Citocinas
16.
ACS Appl Mater Interfaces ; 15(14): 18372-18378, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987738

RESUMEN

High-performance phototransistor-based solar-blind (200-280 nm) ultraviolet (UV) photodetectors (PDs) are constructed with a low-cost thin-film ZnO/Ga2O3 heterojunction. The optimized PD shows high spectral selectivity (R254/R365 > 1 × 103) with a photo-to-dark current ratio of ∼104, a responsivity of 113 mA/W, a detectivity of 1.25 × 1012 Jones, and a response speed of 41 ms under 254 nm UV light irradiation. It is found that the gate electrode of a three-terminal phototransistor can amplify the responsivity and increase the photo-to-dark current ratio because of the different densities of field-induced electrons at different gate biases. In addition, the built-in electric field at the ZnO/Ga2O3 heterojunction interface can control the distribution of the photoinduced electrons and the total conductivity of the heterojunction, which can further enhance device performance. Together with the simple fabrication process, the achieved results suggest that the three-terminal ZnO/Ga2O3 heterojunction phototransistor is a promising candidate for highly sensitive solar-blind PDs.

17.
J Clin Med ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902747

RESUMEN

BACKGROUND: Cemented and uncemented fixation are the primary methods of tibial prosthesis fixation in total knee arthroplasty. However, the optimal fixation method remains controversial. This article explored whether uncemented tibial fixation has better clinical and radiological outcomes, fewer complications, and revision rates compared to cemented tibial fixation. METHODS: We searched the PubMed, Embase, Cochrane Library, and Web of Science databases up to September 2022 to identify randomized controlled trials (RCTs) that compared uncemented total knee arthroplasty (TKA) and cemented TKA. The outcome assessment consisted of clinical and radiological outcomes, complications (aseptic loosening, infection, and thrombosis), and revision rate. Subgroup analysis was used to explore the effects of different fixation methods on knee scores in younger patients. RESULTS: Nine RCTs were finally analyzed with 686 uncemented knees and 678 cemented knees. The mean follow-up time was 12.6 years. The pooled data revealed significant advantages of uncemented fixations over cemented fixations in terms of the Knee Society Knee Score (KSKS) (p = 0.01) and the Knee Society Score-Pain (KSS-Pain) (p = 0.02). Cemented fixations showed significant advantages in maximum total point motion (MTPM) (p < 0.0001). There was no significant difference between uncemented fixation and cemented fixation regarding functional outcomes, range of motion, complications, and revision rates. When comparing among young people (<65 years), the differences in KSKS became statistically insignificant. No significant difference was shown in aseptic loosening and the revision rate among young patients. CONCLUSIONS: The current evidence shows better knee score, less pain, comparable complications and revision rates for uncemented tibial prosthesis fixation, compared to cemented, in cruciate-retaining total knee arthroplasty.

18.
J Pers Med ; 13(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36836601

RESUMEN

In this research, we aimed to perform a comprehensive bioinformatic analysis of immune cell infiltration in osteoarthritic cartilage and synovium and identify potential risk genes. Datasets were downloaded from the Gene Expression Omnibus database. We integrated the datasets, removed the batch effects and analyzed immune cell infiltration along with differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was used to identify the positively correlated gene modules. LASSO (least absolute shrinkage and selection operator)-cox regression analysis was performed to screen the characteristic genes. The intersection of the DEGs, characteristic genes and module genes was identified as the risk genes. The WGCNA analysis demonstrates that the blue module was highly correlated and statistically significant as well as enriched in immune-related signaling pathways and biological functions in the KEGG and GO enrichment. LASSO-cox regression analysis screened 11 characteristic genes from the hub genes of the blue module. After the DEG, characteristic gene and immune-related gene datasets were intersected, three genes, PTGS1, HLA-DMB and GPR137B, were identified as the risk genes in this research. In this research, we identified three risk genes related to the immune system in osteoarthritis and provide a feasible approach to drug development in the future.

19.
Front Immunol ; 13: 970287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466858

RESUMEN

Severe respiratory viral infections, including SARS-CoV-2, have resulted in high mortality rates despite corticosteroids and other immunomodulatory therapies. Despite recognition of the pathogenic role of neutrophils, in-depth analyses of this cell population have been limited, due to technical challenges of working with neutrophils. We undertook an unbiased, detailed analysis of neutrophil responses in adult patients with COVID-19 and healthy controls, to determine whether distinct neutrophil phenotypes could be identified during infections compared to the healthy state. Single-cell RNA sequencing analysis of peripheral blood neutrophils from hospitalized patients with mild or severe COVID-19 disease and healthy controls revealed distinct mature neutrophil subpopulations, with relative proportions linked to disease severity. Disruption of predicted cell-cell interactions, activated oxidative phosphorylation genes, and downregulated antiviral and host defense pathway genes were observed in neutrophils obtained during severe compared to mild infections. Our findings suggest that during severe infections, there is a loss of normal regulatory neutrophil phenotypes seen in healthy subjects, coupled with the dropout of appropriate cellular interactions. Given that neutrophils are the most abundant circulating leukocytes with highly pathogenic potential, current immunotherapies for severe infections may be optimized by determining whether they aid in restoring an appropriate balance of neutrophil subpopulations.


Asunto(s)
COVID-19 , Humanos , Neutrófilos , SARS-CoV-2 , Gravedad del Paciente , Antivirales
20.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364678

RESUMEN

The applications of thin-film transistors (TFTs) based on oxide semiconductors are limited due to instability under negative bias illumination stress (NBIS). Here, we report TFTs based on solution-processed In2O3 semiconductors doped with Pr4+ or Tb4+, which can effectively improve the NBIS stability. The differences between the Pr4+-doped In2O3 (Pr:In2O3) and Tb4+-doped In2O3 (Tb:In2O3) are investigated in detail. The undoped In2O3 TFTs with different annealing temperatures exhibit poor NBIS stability with serious turn-on voltage shift (ΔVon). After doping with Pr4+/Tb4+, the TFTs show greatly improved NBIS stability. As the annealing temperature increases, the Pr:In2O3 TFTs have poorer NBIS stability (ΔVon are -3.2, -4.8, and -4.8 V for annealing temperature of 300, 350, and 400 °C, respectively), while the Tb:In2O3 TFTs have better NBIS stability (ΔVon are -3.6, -3.6, and -1.2 V for annealing temperature of 300, 350, and 400 ℃, respectively). Further studies reveal that the improvement of the NBIS stability of the Pr4+/Tb4+:In2O3 TFTs is attributed to the absorption of the illuminated light by the Pr/Tb4fn-O2p6 to Pr/Tb 4fn+1-O2p5 charge transfer (CT) transition and downconversion of the light to nonradiative transition with a relatively short relaxation time compared to the ionization process of the oxygen vacancies. The higher NBIS stability of Tb:In2O3 TFTs compared to Pr:In2O3 TFTs is ascribed to the smaller ion radius of Tb4+ and the lower energy level of Tb 4f7 with a isotropic half-full configuration compared to that of Pr 4f1, which would make it easier for the Tb4+ to absorb the visible light than the Pr4+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...